Ion Thruster






An ion thruster is a form of electric propulsion used for spacecraft propulsion that creates thrust by accelerating ions. Ion thrusters are categorized by how they accelerate the ions, using either electrostatic or electromagnetic force. Electrostatic ion thrusters use the Coulomb force and accelerate the ions in the direction of the electric field. Electromagnetic ion thrusters use the Lorentz force to accelerate the ions. Note that the term "ion thruster" frequently denotes the electrostatic or gridded ion thrusters only.

The thrust created in ion thrusters is very small compared to conventional chemical rockets, but a very high specific impulse, or propellant efficiency, is obtained. This high propellant efficiency is achieved through the very frugal propellant consumption of the ion thruster propulsion system. They do, however, use a large amount of power. Given the practical weight of suitable power sources, the accelerations given by these types of thrusters is of the order of one thousandth of standard gravity.

Due to their relatively high power needs, given the specific power of power supplies, and the requirement of an environment void of other ionized particles, ion thrust propulsion is currently only practical beyond planetary atmosphere (in space).

Gridded electrostatic ion thrusters :





Gridded electrostatic ion thrusters commonly utilize xenon gas. This gas has no charge and is ionized by bombarding it with energetic electrons. These electrons can be provided from a hot cathode filament and when accelerated in the electrical field of the cathode, fall to the anode (Kaufman type ion thruster). Alternatively, the electrons can be accelerated by the oscillating electric field induced by an alternating magnetic field of a coil, which results in a self-sustaining discharge and omits any cathode (radio frequency ion thruster).

The positively charged ions are extracted by an extraction system consisting of 2 or 3 multi-aperture grids. After entering the grid system via the plasma sheath the ions are accelerated due to the potential difference between the first and second grid (named screen and accelerator grid) to the final ion energy of typically 1-2 keV, thereby generating the thrust.


Ion thrusters emit a beam of positive charged xenon ions only. To avoid charging-up the spacecraft, another cathode is placed near the engine, which emits electrons (basically the electron current is the same as the ion current) into the ion beam. This also prevents the beam of ions from returning to the spacecraft and thereby cancelling the thrust.